data visualisation

A Deep Dive into How Flexibility Affects The Bias and Variance Trade Off

When we are building a machine learning model you have a choice of a simple, which would be an inflexible, model vs a complicated, or very flexible model. We need to decide how flexible the model should be to work well for future samples. An inflexible model may not reflect a complex underlying process adequately and hence would be biased. A flexible model has the capacity to capture a complex underlying process but the fitted version might change from one sample to another enormously, which is called variance.